Object Maps

Object maps are hash dictionaries. Properties are all dynamic values and can be freely added and retrieved.

type_of() an object map returns "map".

Tip: Object maps are FAST

Normally, when properties are accessed, copies of the data values are made. This is normally slow.

Object maps have special treatment – properties are accessed via references, meaning that no copies of data values are made.

This makes object map access fast, especially when deep within a properties chain.

// 'obj' is a normal custom type
let x = obj.a.b.c.d;

// The above is equivalent to:
let a_value = obj.a;        // temp copy of 'a'
let b_value = a_value.b;    // temp copy of 'b'
let c_value = b_value.c;    // temp copy of 'c'
let d_value = c_value.d;    // temp copy of 'd'
let x = d_value;

// 'map' is an object map
let x = map.a.b.c.d;        // direct access to 'd'
                            // 'a', 'b' and 'c' are not copied

map.a.b.c.d = 42;           // directly modifies 'd' in 'a', 'b' and 'c'
                            // no copy of any property value is made

map.a.b.c.d.calc();         // directly calls 'calc' on 'd'
                            // no copy of any property value is made

Literal Syntax

Object map literals are built within braces #{} with name:value pairs separated by commas ,:

#{ property : value,, property : value }

#{ property : value,, property : value , } // trailing comma is OK

The property name can be a simple identifier following the same naming rules as variables, or a string literal without interpolation.

Property Access Syntax

Dot notation

The dot notation allows only property names that follow the same naming rules as variables.

object . property

Elvis notation

The Elvis notation is similar to the dot notation except that it returns () if the object itself is ().

// returns () if object is ()
object ?. property

// no action if object is ()
object ?. property = value ;

Index notation

The index notation allows setting/getting properties of arbitrary names (even the empty string).

object [ property ]

Handle Non-Existent Properties

Trying to read a non-existent property returns () instead of causing an error.

This is similar to JavaScript where accessing a non-existent property returns undefined.

let map = #{ foo: 42 };

// Regular property access
let x = map.foo;            // x == 42

// Non-existent property
let x = map.bar;            // x == ()

Check for property existence

Use the in operator to check whether a property exists in an object-map.

let map = #{ foo: 42 };

"foo" in map == true;

"bar" in map == false;

Short-circuit non-existent property access

Use the Elvis operator (?.) to short-circuit further processing if the object is ().

x.a.b.foo();        // <- error if 'x', 'x.a' or 'x.a.b' is ()

x.a.b = 42;         // <- error if 'x' or 'x.a' is ()

x?.a?.b?.foo();     // <- ok! returns () if 'x', 'x.a' or 'x.a.b' is ()

x?.a?.b = 42;       // <- ok even if 'x' or 'x.a' is ()

Default property value

Using the null-coalescing operator to give non-existent properties default values.

let map = #{ foo: 42 };

// Regular property access
let x = map.foo;            // x == 42

// Non-existent property
let x = map.bar;            // x == ()

// Default value for property
let x = map.bar ?? 42;      // x == 42

Built-in Functions

The following methods operate on object maps.

FunctionParameter(s)Description
getproperty namegets a copy of the value of a certain property (() if the property does not exist)
set
  1. property name
  2. new element
sets a certain property to a new value (property is added if not already exists)
lennonereturns the number of properties
is_emptynonereturns true if the object map is empty
clearnoneempties the object map
removeproperty nameremoves a certain property and returns it (() if the property does not exist)
+= operator, mixinsecond object mapmixes in all the properties of the second object map to the first (values of properties with the same names replace the existing values)
+ operator
  1. first object map
  2. second object map
merges the first object map with the second
== operator
  1. first object map
  2. second object map
are the two object maps the same (elements compared with the == operator, if defined)?
!= operator
  1. first object map
  2. second object map
are the two object maps different (elements compared with the == operator, if defined)?
fill_withsecond object mapadds in all properties of the second object map that do not exist in the object map
contains, in operatorproperty namedoes the object map contain a property of a particular name?
drainfunction pointer to predicate (usually a closure)removes all elements (returning them) that return true when called with the predicate function taking the following parameters:
  1. key
  2. (optional) object map element (if omitted, the object map element is bound to this)
retainfunction pointer to predicate (usually a closure)removes all elements (returning them) that do not return true when called with the predicate function taking the following parameters:
  1. key
  2. (optional) object map element (if omitted, the object map element is bound to this)
filterfunction pointer to predicate (usually a closure)constructs a object map with all elements that return true when called with the predicate function taking the following parameters:
  1. key
  2. (optional) object map element (if omitted, the object map element is bound to this)
keysnonereturns an array of all the property names (in random order)
valuesnonereturns an array of all the property values (in random order)
to_jsonnonereturns a JSON representation of the object map (() is mapped to null, all other data types must be supported by JSON)

Examples

let y = #{              // object map literal with 3 properties
    a: 1,
    bar: "hello",
    "baz!$@": 123.456,  // like JavaScript, you can use any string as property names...
    "": false,          // even the empty string!

    `hello`: 999,       // literal strings are also OK

    a: 42,              // <- syntax error: duplicated property name

    `a${2}`: 42,        // <- syntax error: property name cannot have string interpolation
};

y.a = 42;               // access via dot notation
y.a == 42;

y.baz!$@ = 42;          // <- syntax error: only proper variable names allowed in dot notation
y."baz!$@" = 42;        // <- syntax error: strings not allowed in dot notation
y["baz!$@"] = 42;       // access via index notation is OK

"baz!$@" in y == true;  // use 'in' to test if a property exists in the object map
("z" in y) == false;

ts.obj = y;             // object maps can be assigned completely (by value copy)
let foo = ts.list.a;
foo == 42;

let foo = #{ a:1, };    // trailing comma is OK

let foo = #{ a:1, b:2, c:3 }["a"];
let foo = #{ a:1, b:2, c:3 }.a;
foo == 1;

fn abc() {
    { a:1, b:2, c:3 }  // a function returning an object map
}

let foo = abc().b;
foo == 2;

let foo = y["a"];
foo == 42;

y.contains("a") == true;
y.contains("xyz") == false;

y.xyz == ();            // a non-existent property returns '()'
y["xyz"] == ();

y.len == ();            // an object map has no property getter function
y.len() == 3;           // method calls are OK

y.remove("a") == 1;     // remove property

y.len() == 2;
y.contains("a") == false;

for name in y.keys() {  // get an array of all the property names via 'keys'
    print(name);
}

for val in y.values() { // get an array of all the property values via 'values'
    print(val);
}

y.clear();              // empty the object map

y.len() == 0;

Special Support for OOP

Object maps can be used to simulate object-oriented programming (OOP) by storing data as properties and methods as properties holding function pointers.

If an object map’s property holds a function pointer, the property can simply be called like a normal method in method-call syntax.

This is a short-hand to avoid the more verbose syntax of using the call function keyword.

When a property holding a function pointer or a closure is called like a method, it is replaced as a method call on the object map itself.

let obj = #{
                data: 40,
                action: || this.data += x    // 'action' holds a closure
           };

obj.action(2);                               // calls the function pointer with 'this' bound to 'obj'

obj.call(obj.action, 2);                     // <- the above de-sugars to this

obj.data == 42;

// To achieve the above with normal function pointer call will fail.

fn do_action(map, x) { map.data += x; }      // 'map' is a copy

obj.action = do_action;                      // <- de-sugars to 'Fn("do_action")'

obj.action.call(obj, 2);                     // a copy of 'obj' is passed by value

obj.data == 42;                              // 'obj.data' is not changed